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Abstract. The purpose of this paper is to study the solvability for a class of generalized vec-
tor variational inequalities in reflexive Banach spaces. Utilizing the KKM-Fan lemma and
the Nadler’s result, we prove the solvability results for this class of generalized vector varia-
tional inequalities for monotone vector multifuctions. On the other hand, we first introduce
the concepts of complete semicontinuity and strong semicontinuity for vector multifunc-
tions. Then we prove the solvability for this class of generalized vector variational inequali-
ties without monotonicity assumption by using these concepts and by applying the Brouwer
fixed point theorem. The results in this paper are extension and improvement of the corre-
sponding results in Huang and Fang (2006).
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1. Introduction and Preliminaries

It is well known that vector variational inequalities were initially studied
by Giannessi (1980) in the setting of finite dimensional Euclidean spaces.
Ever since then they have been widely studied and generalized in infi-
nite dimensional spaces since they cover many diverse disciplines such as
partial differential equations, optimal control, optimization, mathematical
programming, mechanics, and finance, etc as special cases. The reader is
referred to Chen (1989), Chen and Yang (1990), Chen (1992), Giannessi
(2000), Giannessi and Maugeri (1995), Huang and Fang (2005), Konnov
and Yao (1997), Lai and Yao (1996), Siddiqi, Ansari and Khaliq (1995),
Yang (1993), Yang (1997), Yang and Goh (1997), Yu and Yao (1996) and
the references therein.

Let X and Y be two real Banach spaces, K ⊂X be a nonempty, closed
and convex subset, and C ⊂Y be a closed, convex and pointed cone with
apex at the origin and intC �=∅ where intC denotes the interior of C. The
cone C is called proper if C �= Y . Recall that C is said to be a closed,
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convex and pointed cone with apex at the origin if C is closed and the
following conditions hold:

(i) λC ⊂C, ∀λ>0;
(ii) C +C ⊂C;

(iii) C ∩ (−C)={0}.
Given a closed, convex and pointed cone C with apex at the origin in Y ,
we can define relations “� C” and “�≤C” as follows:

x � Cy ⇔y −x ∈C

and

x �≤C y ⇔y −x �∈C.

Moreover, a �≤intC b means b − a �∈ intC. Clearly “� C” is a partial order.
In this case (Y, � C) is called an ordered Banach space ordered by C. Let
L(X,Y ) denote the space of all continuous linear maps from X into Y . Let
Lc(X,Y ) be the subspace of L(X,Y ) which consists in all completely con-
tinuous linear maps from X into Y . Recall that a mapping g : X → Y is
said to be completely continuous if the weak convergence of xn to x in X

implies the strong convergence of g(xn) to g(x) in Y .
Now we recall the following concepts and lemmas.

DEFINITION 1.1.

(i) A map A :K →L(X,Y ) is said to be monotone if

〈Ax −Ay,x −y〉 � C0, ∀x, y ∈K,

where a � Cb means a −b∈C;
(ii) Let M : L(X,Y )→L(X,Y ) be a mapping. A nonempty compact-val-

ued multifunction T :K →2L(X,Y ) is said to be monotone with respect
to M if for each x, y ∈K,

〈Mu−Mv,x −y〉�C 0, ∀u∈T (x), v ∈T (y).

DEFINITION 1.2. A map f :K →Y is said to be convex if

f (tx + (1− t)y)�C tf (x)+ (1− t)f (y), ∀x, y ∈K, t ∈ [0,1].

LEMMA 1.1. See Nadler (1969). Let (X,‖ · ‖) be a normed vector space
and H be a Hausdorff metric on the collection CB(X) of all nonempty,
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closed and bounded subsets of X, induced by a metric d in terms of d(u, v)=
‖u−v‖, which is defined by

H(U,V )=max
(

sup
u∈U

inf
v∈V

‖u−v‖, sup
v∈V

inf
u∈U

‖u−v‖
)

,

for U and V in CB(X). If U and V are compact sets in X, then for each
u∈U , there exists v ∈V such that

‖u−v‖�H(U,V ).

DEFINITION 1.3.

(i) A map A : K → L(X,Y ) is said to be υ-hemicontinuous if for any
given x, y ∈K, the mapping t →〈A(x + t (y −x)), y −x〉 is continuous
at 0+;

(ii) A nonempty compact-valued multifunction T :K →2L(X,Y ) is said to
be H -hemicontinuous if for any given x, y ∈ K, the mapping t →
H(T (x + t (y − x)), T (x)) is continuous at 0+ where H is the Haus-
dorff metric defined on CB(L(X,Y )).

Recently, Huang and Fang (2005) considered and studied the solvabil-
ity for a class of vector variational inequalities in reflexive Banach spaces.
They first proved the solvability for this class of vector variational inequal-
ities without monotonicity assumption.

THEOREM 1.1. See Theorem 2.1 in Huang and Fang (2005). Let K be a
nonempty, bounded, closed and convex subset of a real reflexive Banach space
X and Y be a real Banach space ordered by a closed, convex and pointed
cone C with apex at the origin and intC �=∅. Suppose that T :K →Lc(X,Y )

is a completely continuous map and f :K →Y is a completely continuous and
convex map. Then, there exists x ∈K such that

〈T x, y −x〉+f (y)−f (x) �≤intC 0, ∀y ∈K.

Second, they proved the solvability for this class of vector variational
inequalities with monotone mappings.

THEOREM 1.2. See Theorem 3.1 in Huang and Fang (2005). Let K be a
nonempty, bounded, closed and convex subset of a real reflexive Banach space
X and Y be a real Banach space ordered by a closed, convex and pointed
cone C with apex at the origin and intC �=∅. Suppose that T :K →Lc(X,Y )

is a υ-hemicontinuous and monotone map, and f :K →Y is a completely con-
tinuous and convex map. Then, there exists x ∈K such that
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〈T x, y −x〉+f (y)−f (x) �≤intC 0, ∀y ∈K.

Let T : K → 2L(X,Y ) be a vector multifunction. For given maps A :
L(X,Y )→L(X,Y ) and f : K →Y , let us consider the following generalized
vector variational inequality problem (for short, GVVI): Find x ∈K and u∈
T (x) such that

〈Au,y −x〉+f (y)−f (x) �≤intC 0, ∀y ∈K.

Motivated and inspired by Huang and Fang (2005), we will study the
solvability for the above class of GVVIs in reflexive Banach spaces in this
paper. Utilizing the KKM-Fan lemma and the Nadler’s result, we estab-
lish some solvability results for this class of GVVIs with monotone vector
multifunctions. On the other hand, we first introduce the concepts of com-
plete semicontinuity and strong semicontinuity for vector multifunctions.
Then we prove the solvability for this class of GVVIs without monotonic-
ity assumption by using these concepts and by applying the Brouwer fixed
point theorem. The results presented in this paper are the extension and
improvement of the corresponding results in Huang and Fang (2005).

2. Solvability of the GVVI with Monotonicity

In this section, we shall prove the solvability for GVVI with monotone
vector multifunctions in reflexive Banach spaces by using the KKM-Fan
lemma and the Nadler’s result. First we recall some concepts and lemmas.

Let D be a nonempty subset of a topological vector space E. A mul-
tivalued map G : D → 2E is called a KKM map if for each finite subset
{x1, x2, . . . , xn}⊂D,

conv{x1, x2, . . . , xn}⊂
n⋃

i=1

G(xi),

where conv{x1, x2, . . . , xn} denotes the convex hull of {x1, x2, . . . , xn}.

LEMMA 2.1. See Fan (1961). Let D be an arbitrary nonempty subset of a
Hausdorff topological vector space E. Let the multivalued mapping G :D →
2E be a KKM map such that G(x) is closed for all x ∈D and is compact for
at least one x ∈D. Then

⋂
x∈D

G(x) �=∅.
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LEMMA 2.2. See Chen and Yang (1990). Let Y be a real Banach space
ordered by a closed, convex and pointed cone C with apex at the origin and
intC �=∅. Then, for any a, b, c∈Y , the following hold:

(i) c �≤intC a and a �C b imply that c �≤intC b;
(ii) c �≥intC a and a �C b imply that c �≥intC b.

LEMMA 2.3. Let K be a nonempty, closed and convex subset of a real
Banach space X and Y be a real Banach space ordered by a closed, convex
and pointed cone C with apex at the origin and intC �=∅. Let A :L(X,Y )→
L(X,Y ) be a continuous map, T :K →2L(X,Y ) be a nonempty compact-valued
multifunction which is H -hemicontinuous and monotone with respect to A,
and f :K →Y be a convex map. Then the following are equivalent:

(a) there exist x0 ∈K and u0 ∈T (x0) such that

〈Au0, y −x0〉+f (y)−f (x0) �≤intC 0, ∀y ∈K;
(b) there exists x0 ∈K such that

〈Av,y −x0〉+f (y)−f (x0) �≤intC 0, ∀y ∈K,v ∈T (y).

Proof. Suppose that there exist x0 ∈K and u0 ∈T (x0) such that

〈Au0, y −x0〉+f (y)−f (x0) �≤intC 0, ∀y ∈K.

Since T is monotone with respect to A,

〈Av,y−x0〉+f (y)−f (x0)�C 〈Au0,y−x0〉+f (y)−f (x0), ∀y ∈K,v∈T (y).

By Lemma 2.2,

〈Av,y −x0〉+f (y)−f (x0) �≤intC 0, ∀y ∈K,v ∈T (y).

Conversely, suppose that there exists x0 ∈K such that

〈Av,y −x0〉+f (y)−f (x0) �≤intC 0, ∀y ∈K,v ∈T (y).

For any given y ∈K, we know that yt = ty + (1− t)x0 ∈K, ∀t ∈ (0,1) since K

is convex. Replacing y by yt in the above inequality, one derives for each
vt ∈T (yt )

〈Avt, yt −x0〉+f (yt )−f (x0)

=〈Avt, ty + (1− t)x0 −x0〉+f (ty + (1− t)x0)−f (x0)

�C 〈Avt, t (y −x0)〉+ tf (y)+ (1− t)f (x0)−f (x0)

= t [〈Avt, y −x0〉+f (y)−f (x0)].
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By Lemma 2.2,

〈Avt, y −x0〉+f (y)−f (x0) �≤intC 0, ∀vt ∈T (yt ), t ∈ (0,1). (1)

Since T (yt ) and T (x0) are compact, from Lemma 1.1 it follows that for
each fixed vt ∈T (yt ) there exists an ut ∈T (x0) such that

‖vt −ut‖�H(T (yt ), T (x0)).

Since T (x0) is compact, without loss of generality, we may assume that
ut →u0 ∈T (x0) as t →0+. Since T is H -hemicontinuous, H(T (yt ), T (x0))→
0 as t →0+. Thus one has

‖vt −u0‖ �‖vt −ut‖+‖ut −u0‖
�H(T (yt ), T (x0))+‖ut −u0‖→0 as t →0+.

Note that A is continuous. Therefore letting t →0+, we obtain

‖〈Avt, y −x0〉−〈Au0, y −x0〉‖=‖〈Avt −Au0, y −x0〉‖
�‖Avt −Au0‖‖y −x0‖→0.

Also by (1) we deduce that 〈Avt, y −x0〉+f (y)−f (x0)∈Y \ (−intC). Since
Y\(−intC) is closed, we have that 〈Au0, y −x0〉+f (y)−f (x0)∈Y \ (−intC),
and so

〈Au0, y −x0〉+f (y)−f (x0) �≤intC 0, ∀y ∈K.

This completes the proof.

THEOREM 2.1. Let K be a nonempty, bounded closed and convex subset
of a real reflexive Banach space X and Y be a real Banach space ordered
by a proper closed convex and pointed cone C with apex at the origin and
intC �= ∅. Let A : L(X,Y ) → Lc(X,Y ) be a continuous map, T : K → 2L(X,Y )

be a nonempty compact-valued multifunction which is H -hemicontinuous and
monotone with respect to A, and f : K →Y be a completely continuous and
convex map. Then there exist x ∈K and u∈T (x) such that

〈Au,y −x〉+f (y)−f (x) �≤intC 0, ∀y ∈K.

Proof. Define two multivalued maps F,G :K →2K as follows:

F(y)={x ∈K : 〈Au,y−x〉+f (y)−f (x) �≤intC 0 for some u∈T x}, ∀y ∈K
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and

G(y)={x ∈K : 〈Av,y −x〉+f (y)−f (x) �≤intC 0 for all v ∈Ty}, ∀y ∈K.

Then F(y) and G(y) are nonempty since y ∈ G(y) ∩ F(y). We claim that
F is a KKM mapping. If this is not true, then there exist a finite set
{x1, . . . , xn}⊂K and ti �0, i =1,2, . . . , n with

∑n
i=1 ti =1 such that

x =
n∑

i=1

tixi �∈
n⋃

i=1

F(xi).

Hence for any u∈T (x) one has

〈Au,xi −x〉+f (xi)−f (x)�intC 0, i =1,2, . . . , n.

It follows that

0 =〈Au,x −x〉+f (x)−f (x)

�C

n∑
i=1

ti〈Au,x −xi〉+f (x)−
n∑

i=1

tif (xi)

=
n∑

i=1

ti [〈Au,x −xi〉+f (x)−f (xi)]

�intC 0

which leads to a contradiction since C is proper. So F is a KKM map-
ping. Furthermore we can prove that F(y)⊂G(y) for every y ∈K. Indeed
let x ∈F(y). Then for some u∈T (x) one has

〈Au,y −x〉+f (y)−f (x) �≤intC 0.

Since T is monotone with respect to A,

〈Av,y −x〉+f (y)−f (x)�C 〈Au,y −x〉+f (y)−f (x), ∀y ∈K,v ∈Ty.

By Lemma 2.2 one has

〈Av,y −x〉+f (y)−f (x) �≤intC 0.

Hence F(y)⊂G(y) for each y ∈K, and so G is also a KKM mapping. Now
we claim that for each y ∈K, G(y)⊂K is closed in the weak topology of
X. Indeed suppose x̄ ∈G(y)

w
, the weak closure of G(y). Since X is reflex-

ive, there is a sequence {xn} in G(y) such that {xn} converges weakly to x̄ ∈
K. Then we derive for each v ∈Ty

〈Av,y −xn〉+f (y)−f (xn) �≤intC 0
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which implies that 〈Av,y − xn〉+ f (y)− f (xn)∈Y \ (−intC). Since Av and
f are completely continuous and Y \ (−intC) is closed, so {〈Av,y − xn〉+
f (y)−f (xn)} converges strongly to 〈Av,y − x̄〉+f (y)−f (x̄) and 〈Av,y −
x̄〉+f (y)−f (x̄)∈Y \ (−intC). Thus we get

〈Av,y − x̄〉+f (y)−f (x̄) �≤intC 0,

and so x̄ ∈ G(y). This shows that G(y) is weakly closed for each y ∈ K.
Since X is reflexive and K ⊂X is nonempty, bounded, closed and convex,
K is a weakly compact subset of X and so G(y) is also weakly compact.
According to Lemma 2.1,

⋂
y∈K

G(y) �=∅.

This implies that there exists x0 ∈K such that

〈Av,y −x0〉+f (y)−f (x0) �≤intC 0, ∀y ∈K,v ∈T (y).

Therefore by applying Lemma 2.3, we conclude that there exist x0 ∈K and
u0 ∈T (x0) such that

〈Au0, y −x0〉+f (y)−f (x0) �≤intC 0, ∀y ∈K.

This completes the proof.

REMARK 2.1. In Theorem 2.1, Lc(X,Y ) and the complete continuity of
f cannot be replaced by L(X,Y ) and continuity of f , respectively. Indeed,
we can only prove that for each y ∈K, G(y) is closed in the norm topology
of X without convexity of G(y) if A maps L(X,Y ) into L(X,Y ) and f is
continuous. So G(y) need not be weakly compact.

If the boundedness of K is dropped off, then we have the following the-
orem under certain coercivity condition:

THEOREM 2.2. Let K be a nonempty, closed and convex subset of a real
reflexive Banach space X with 0 ∈K and Y be a real Banach space ordered
by a proper closed convex and pointed cone C with apex at the origin and
intC �= ∅. Let A : L(X,Y ) → Lc(X,Y ) be a continuous map, T : K → 2L(X,Y )

be a nonempty compact-valued multifunction which is H -hemicontinuous and
monotone with respect to A, and f : K →Y be a completely continuous and
convex map. If there exists some r >0 such that

〈Av,y〉+f (y)−f (0)�intC 0, ∀v ∈T (y), y ∈K with ‖y‖= r, (2)
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then there exist x ∈K and u∈T (x) such that

〈Au,y −x〉+f (y)−f (x) �≤intC 0, ∀y ∈K.

Proof. Let Br ={x ∈X : ‖x‖� r}. By Theorem 2.1, there exist xr ∈K ∩Br

and ur ∈T (xr) such that

〈Aur, y −xr〉+f (y)−f (xr) �≤intC 0, ∀y ∈K ∩Br. (3)

Putting y =0 in the above inequality, one has

〈Aur, xr〉+f (xr)−f (0) �≥intC 0. (4)

Combining (2) with (4), we know that ‖xr‖<r. For any z∈K, choose t ∈
(0,1) enough small such that (1− t)xr + tz∈K ∩Br . Putting y = (1− t)xr + tz

in (3), one has

〈Aur, (1− t)xr + tz−xr〉+f ((1− t)xr + tz)−f (xr) �≤intC 0.

Since f is convex,

〈Aur, (1− t)xr + tz−xr〉+f ((1− t)xr + tz)−f (xr)

�C t〈Aur, z−xr〉+ (1− t)f (xr)+ tf (z)−f (xr)

= t [〈Aur, z−xr〉+f (z)−f (xr)].

By Lemma 2.2,

〈Aur, z−xr〉+f (z)−f (xr) �≤intC 0, ∀z∈K.

This completes the proof.

By Theorems 2.1 and 2.2, we can obtain the following results:

COROLLARY 2.1. Let K be a nonempty, bounded closed and convex sub-
set of X = Rn and Y be a real Banach space ordered by a proper closed
convex and pointed cone C with apex at the origin and intC �= ∅. Let A :
L(Rn,Y )→L(Rn, Y ) be a continuous map, T : K → 2L(Rn,Y ) be a nonempty
compact-valued multifunction which is H -hemicontinuous and monotone with
respect to A, and f : K → Y be a continuous and convex map. Then there
exist x ∈K and u∈T (x) such that

〈Au,y −x〉+f (y)−f (x) �≤intC 0, ∀y ∈K.
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COROLLARY 2.2. Let K be a nonempty, closed and convex subset of X =
Rn with 0 ∈ K and Y be a real Banach space ordered by a proper closed
convex and pointed cone C with apex at the origin and intC �= ∅. Let A :
L(Rn,Y ) → L(Rn,Y ) be a continuous map, T : K → 2L(Rn,Y ) be a nonempty
compact-valued multifunction which is H -hemicontinuous and monotone with
respect to A, and f :K →Y be a continuous and convex map. If there exists
some r >0 such that

〈Av,y〉+f (y)−f (0)�intC 0, ∀v ∈T (y), y ∈K with ‖y‖= r, (5)

then there exist x ∈K and u∈T (x) such that

〈Au,y −x〉+f (y)−f (x) �≤intC 0, ∀y ∈K.

3. Solvability of the GVVI without Monotonicity

In this section, we shall present the solvability of the GVVI without mono-
tonicity in reflexive Banach spaces by using Brouwer fixed point theorem.
First we recall some lemmas.

LEMMA 3.1. See Brouwer (1912). Let B be a nonempty, compact and con-
vex subset of a finite dimensional space and g :B →B be a continuous map.
Then there exists x ∈B such that g(x)=x.

It can be readily seen that the following lemma holds.

LEMMA 3.2. See Huang and Fang (2005). Let X be a real Banach space,
K ⊂ X be a nonempty, bounded, closed and convex subset, and Y be a real
Banach space ordered by a closed, convex and pointed cone C. Then the fol-
lowing conclusions hold:

(i) If T :K →Lc(X,Y ) is completely continuous, then for any given y ∈K,
the map gy : K →Y defined by gy(x)=〈T x, y − x〉 is completely con-
tinuous;

(ii) If T : K → L(X,Y ) is continuous, then for any given y ∈ K, the map
gy :K →Y defined by gy(x)=〈T x, y −x〉 is continuous.

In order to establish the main result in this section, we introduce the fol-
lowing concepts.

DEFINITION 3.1. Let K be a nonempty, closed and convex subset of a real
Banach space X and Y be a real Banach space ordered by a closed, convex
and pointed cone C with apex at the origin and intC �=∅. Let f :K →Y and
A : L(X,Y )→L(X,Y ) be two single-valued maps, and T :K →2L(X,Y ) [resp.
T :K →L(X,Y )] be a multivalued [resp. single-valued] map. T is said to be
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(i) completely semicontinuous with respect to A and f if for each y ∈K,

{x ∈K : 〈Au,y −x〉+f (y)−f (x)�intC 0, ∀u∈T (x)}

[resp. {x ∈K : 〈AT x, y −x〉+f (y)−f (x)�intC 0}]
is open in K with respect to the weak topology of X;

(ii) strongly semicontinuous with respect to A and f if for each y ∈K,

{x ∈K : 〈Au,y −x〉+f (y)−f (x)�intC 0, ∀u∈T (x)}

[resp. {x ∈K : 〈AT x, y −x〉+f (y)−f (x)�intC 0}]
is open in K with respect to the norm topology of X.

REMARK 3.1.

(i) Let K be a nonempty, bounded, closed and convex subset of a real
reflexive Banach space X and Y be a real Banach space ordered by
a closed, convex and pointed cone C with apex at the origin and
intC �= ∅. Let f : K → Y be completely continuous, T : K → L(X,Y )

be completely continuous and A : L(X,Y ) → Lc(X,Y ) be continu-
ous. Then T is completely semicontinuous with respect to A and f .
Indeed, it is easy to see that AT :K →Lc(X,Y ) is completely contin-
uous. Hence, according to Lemma 3.2, for each y ∈K the mapping
g :K →Y defined by

gy(x)=〈AT x, y −x〉
is completely continuous. Thus as (3) in the proof of Theorem 2.1 in
Huang and Fang (2005), the following set

Ny ={x ∈K : 〈AT x, y −x〉+f (y)−f (x)�intC 0}
is open in K with respect to the weak topology of X for every y ∈K.

(ii) Let K be a nonempty, compact and convex subset of a real Banach
space X and Y be a real Banach space ordered by a closed, con-
vex and pointed cone C with apex at the origin and intC �= ∅. Let
f : K → Y be continuous, T : K → L(X,Y ) be continuous and A :
L(X,Y ) → L(X,Y ) be continuous. Then T is strongly semicontinu-
ous with respect to A and f . Indeed, it is easy to see that AT :
K →L(X,Y ) is continuous. Hence according to Lemma 3.2, for each
y ∈K the mapping g :K →Y defined by

gy(x)=〈AT x, y −x〉
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is continuous. Thus as in the proof of Theorem 2.2 in Huang and
Fang (2005), the following set

Ny ={x ∈K : 〈AT x, y −x〉+f (y)−f (x)�intC 0}

is open in K with respect to the norm topology of X for every y ∈K.

Next we state and prove the main result in this section.

THEOREM 3.1. Let K be a nonempty, bounded closed and convex subset
of a real reflexive Banach space X and Y be a real Banach space ordered
by a proper closed convex and pointed cone C with apex at the origin and
intC �=∅. Let f :K →Y and A :L(X,Y )→L(X,Y ) be two maps such that f

is convex, and let T : K → 2L(X,Y ) take nonempty values. If T is completely
semicontinuous with respect to A and f , then there exist x ∈K and u∈T (x)

such that

〈Au,y −x〉+f (y)−f (x) �≤intC 0, ∀y ∈K.

Proof. Suppose that the conclusion is not true. Then for each x0 ∈K there
exists some y ∈K such that

〈Au0, y −x0〉+f (y)−f (x0)�intC 0, ∀u0 ∈T (x0). (6)

For every y ∈K, define the set Ny as follows:

Ny ={x ∈K : 〈Au,y −x〉+f (y)−f (x)�intC 0, ∀u∈T (x)}. (7)

Since T is completely semicontinuous with respect to A and f , the set Ny

is open in K with respect to the weak topology of X for every y ∈K.
Now we assert that {Ny : y ∈ K} is an open cover of K with respect to

the weak topology of X. Indeed, first it is easy to see that
⋃
y∈K

Ny ⊂K.

Second, for each x0 ∈K, by (6) there exists y ∈K such that x0 ∈Ny . Hence
x0 ∈⋃

y∈K Ny . This shows that K ⊂⋃
y∈K Ny . Consequently,

K =
⋃
y∈K

Ny.

So the assertion is valid.
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The weak compactness of K implies that there exists a finite set
{y1, . . . , yn}⊂K such that

K =
n⋃

i=1

Nyi
.

Hence there exists a continuous (with respect to the weak topology of
X) partition of unity {β1, . . . , βn} subordinated to {Ny1, . . . ,Nyn

} such that
βj (x)�0,∀x ∈K,j =1, . . . , n,

n∑
j=1

βj (x)=1, ∀x ∈K,

and

βj (x)

{ =0, whenever x �∈Nyj
,

>0, whenever x ∈Nyj
.

Let p :K →X be defined as follows:

p(x)=
n∑

j=1

βj (x)yj , ∀x ∈K. (8)

Since βi is continuous with respect to the weak topology of X for each
i, p is continuous with respect to the weak topology of X. Let S =
conv{y1, . . . , yn} ⊂ K. Then S is a simplex of a finite dimensional space
and p maps S into S. By Brouwer fixed point theorem (Lemma 3.1), there
exists some x0 ∈S such that p(x0)=x0. Now for any given x ∈K, let

k(x)={j :x ∈Nyj
}={j :βj (x)>0}.

Obviously, k(x) �=∅.
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Since x0 ∈S ⊂K is a fixed point of p, we have p(x0)=
∑n

j=1 βj (x0)yj and
hence from (7) and the convexity of f we derive for each u0 ∈T (x0)

0 =〈Au0, x0 −x0〉+f (x0)−f (x0)

=〈Au0, x0 −p(x0)〉+f (x0)−f (p(x0))

=
〈
Au0, x0 −

n∑
j=1

βj (x0)yj

〉
+f (x0)−f


 n∑

j=1

βj (x0)yj




�C

n∑
j=1

βj (x0)[〈Au0, x0 −yj 〉+f (x0)−f (yj )]

=
∑

j∈k(x0)

βj (x0)[〈Au0, x0 −yj 〉+f (x0)−f (yj )]

�intC 0

which leads to a contradiction. Therefore there exist x ∈ K and u ∈ T (x)

such that

〈Au,y −x〉+f (y)−f (x) �≤intC 0, ∀y ∈K.

This completes the proof.

THEOREM 3.2. Let K be a nonempty, compact and convex subset of a real
Banach space X and Y be a real Banach space ordered by a proper closed
convex and pointed cone C with apex at the origin and intC �= ∅. Let f :
K →Y and A : L(X,Y )→L(X,Y ) be two maps such that f is convex, and
let T :K →2L(X,Y ) take nonempty values. If T is strongly semicontinuous with
respect to A and f , then there exist x ∈K and u∈T (x) such that

〈Au,y −x〉+f (y)−f (x) �≤intC 0, ∀y ∈K.

Proof. The proof is similar to that of Theorem 2.1 and so is omitted.

If X = Rn, then Lc(R
n,Y ) = L(Rn,Y ), complete continuity is equivalent

to continuity and complete semicontinuity is equivalent to strong semicon-
tinuity. By Theorem 3.1, we can obtain the following result:

COROLLARY 3.1. Let K be a nonempty, bounded, closed and convex sub-
set of Rn and Y be a real Banach space ordered by a proper closed convex
and pointed cone C with apex at the origin and intC �=∅. Let f :K →Y and
A :L(Rn,Y )→L(Rn,Y ) be two maps such that f is convex, and let T :K →
2L(Rn,Y ) take nonempty values. If T is strongly semicontinuous with respect to
A and f , then there exist x ∈K and u∈T (x) such that

〈Au,y −x〉+f (y)−f (x) �≤intC 0, ∀y ∈K.
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